
Web Site Evolution via Transaction Reengineering

Scott Tilley Damiano Distante Shihong Huang
Dept. of Computer Sciences Dept. of Innovation Engineering Dept. of Computer Science
Florida Institute of Technology University of Lecce, Italy Florida Atlantic University
stilley@cs.fit.edu damiano.distante@unile.it shihong@cse.fau.edu

Abstract
In a transaction-oriented Web site, the user executes a

series of activities in order to carry out a specific task

(e.g., purchase an airplane ticket). The manner in which

the activities can be executed is a consequence of the

transaction design, partially influenced by the

constraints implied by the business model underlying the

Web application. Unfortunately, many Web sites are

constructed with the transaction design hidden in the

overall system implementation. The result is a system

with unpredictable workflow, which can make evolution

difficult. This paper presents a technique for Web site

evolution via transaction reengineering. The

reengineering process consists of the recovery of the

“as-is” design model of a Web application transaction,

an analysis of the result to determine desirable

restructuring options, and a redesign of the transaction

model based on this analysis. The reengineering process

relies on formalism that is a user-centered extension of

the Transaction Design Model of the Ubiquitous Web

Applications (UWA) framework. The goal of the

reengineering process is to emerge with a transaction

design that better reflects the user experience and also

facilitates disciplined evolution of the Web-based

application. An example from the travel industry is used

to illustrate the process.

Keywords: conceptual modeling, design recovery,

reengineering, transactions, Web site evolution

1. Introduction

The Web provides a distributed information system

infrastructure that can be used as the base platform for

application deployment. Indeed, one of the reasons for

the success of e-commerce business today is the

transactional behavior that the Web offers. Business

processes are realized by means of transactions, which in

this context can be interpreted as high-level workflows

corresponding to user tasks (e.g., purchasing an airplane

ticket). The manner in which the activities can be

executed is a consequence of the transaction design and

the constraints imposed on it by the underlying business

process model(s).

As with other kinds of software systems,

transaction-oriented Web sites are required to evolve

over time in response to changing circumstances. For

example, the addition of new flight options to an existing

route, or the introduction of a new payment method.

Unfortunately, many Web sites are constructed without

proper attention to transaction design. Web transactions

need to be designed (in the software engineering sense)

because of their complexity. Treating transaction design

as a by-product of the development process results in

applications prone to erroneous behaviors and poor

usability. For example, it is quite common to incorrectly

treat a transaction as a sequence of navigational steps

through pages of the Web application [7][8]. The result

is a system without an explicit transaction design, which

leads to unpredictable workflow, maintenance

difficulties, and a potentially frustrating session for the

user.

This paper presents a technique for Web site

evolution via transaction reengineering. The prescriptive

reengineering process consists of three steps: (1) the

recovery of the “as-is” design model of a Web

application transaction; (2) an analysis of the result to

determine desirable restructuring options; and (3) a

redesign of the transaction model, introducing the

restructuring options from the recovered “as-is” model,

resulting in the “to-be” design model. The reengineering

process relies on formalism that is a user-centered

extension of the Transaction Design Model of the

Ubiquitous Web Applications (UWA) framework [17].

The recovery step makes the transaction design explicit,

which in turn enables engineers to make informed

decisions about possible changes to the application. The

result is a transaction design that better reflects the user

experience and also facilitates disciplined evolution of

the Web-based application.

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

The next section of the paper outlines the transaction

reengineering process. Section 3 highlights salient

aspects of the design recovery procedure of a

commercial airline’s Web site. Proposed restructurings

of the recovered transaction design models are detailed

in Section 4. Finally, Section 5 summarizes the paper

and outlines possible avenues for future work in the area

of Web application transaction reengineering.

2. The Transaction Reengineering Process

Reengineering is one mechanism for achieving

disciplined software evolution. The reengineering

process for Web-based business-oriented applications is

similar to that of traditional distributed information

systems. However, the singular features of the Web, such

as its heterogeneous nature, its implicit design model

(particularly for transactions), and its inherent

complexity (and often correspondingly low quality)

suggest that the reengineering process be based on an

established decision-guiding framework. For transaction

reengineering in particular, the UWA framework

provides a suitable starting point.

This section outlines selected aspects of the

transaction reengineering process, the entirety of which

is depicted in Figure 1. The formalism underlying the

process is a revised version of the UWA Transaction

Design Model [4], which is the portion of the UWA

framework that focuses specifically on the design of

Web application transactions. The revisions to the

original version of the model have been introduced in

order to focus more on the perspective of the end-user of

the Web application.

The design recovery procedure that relies on this

model is also summarized in this section. Extensive

details of this portion of the reengineering process are

provided in [5]. A detailed illustration of the results of

using the design recovery process is provided in [11].

Figure 1: An overview of the transaction reengineering process

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

2.1 The Transaction Design Model

The UWA design framework provides a complete

design methodology for ubiquitous Web applications

that are multi-channel, multi-user, and context-aware.

The UWA design framework organizes the process of

designing a Web application into four main activities

[12]: (1) requirements elicitation [13]; (2) hypermedia

and operation design [14]; (3) transaction design [15];

and (4) customization design [16].

Using the UWA methodology, the transaction

design process produces two conceptual models: the

Organization Model and the Execution Model. The

Organization Model describes a transaction from a static

point of view. It uses a particular UML class diagram [6]

in which the Activities involved in the transaction are

represented by class stereotypes, which are arranged to

form a tree. The Activity represented by the root of the

tree corresponds to the entire transaction; component

activities and sub-Activities are intermediate nodes and

leaves of the tree that represent sub-transactions and

elementary activities, respectively.

The Execution Model of a transaction defines the

possible execution flow among its component activities

and sub-activities. It is a customized version of the UML

Activity Diagram [9]. The sequence of activities is

described by UML Finite State Machines, in which

activities and sub-activities are represented by states

(ovals), and execution flow between them is represented

by state transition (arcs).

The formalism used in the reengineering process is

an extended and refined version of this UWA

Transaction Design Model. Changes to the original

model include simplifications and extensions related to

the definition of Activity (which a Web transaction is

composed of), and to several aspects of the Organization

and Execution Models.

Changes to the Definition of Activity

One of the revisions to the UWA Transaction

Design Model concerns the definition of Activity and

related aspects. Activities are defined as units of work

the user has to execute in order to fulfill a goal. Thus,

only user Activities are considered and modeled; system-

related Activities are neglected in this context. The

OperationSet in the original model that is associated with

an Activity is no longer considered, since it is primarily

related to data-level details and transaction

implementation issues.

In addition, an Activity’s PropertySet is redefined to

be more user-oriented, through the introduction of a new

property (Suspendability), and the tuning of the

semantics associated with the previously existing

properties. The extended PropertySet set is now

Atomicity, Consistency, Isolation, Durability, and

Suspendability (ACIDS).

Changes to the Organization Model

Significant changes have been made to the UWA’s

original Organization Model by dividing the possible

relations between an Activity a1 and its sub-Activities

a1.1 a1.n into two categories: the Hierarchical Relations

and the Semantic Relations. The distinction between

hierarchical and semantic relations permits the designer

to reason about transactions in a manner not possible

with the unadorned UWA model.

The two categories are defined as follows:

Hierarchical Relations: The set of “part-of”

relations from the Organization Model. It is composed of

relations such as Requires, RequiresOne, and Optional.

Semantic Relations: The set of relationships that

are not a “part-of” type. Relations among sub-activities

of different activities are normally part of this kind of

relation. The list semantic relations currently consist of

the Visible, Compensates, and Can Use.

Changes to the Execution Model

Several changes have been introduced into the

UWA’s Execution Model to focus attention on design

issues that have direct user impact. For example, the

Commit and Rollback pseudo states have been removed;

the inclusion of an Activity is now directly derived by

the execution flow in the model, while the failure or the

voluntary abort of it is modeled by the unique pseudo-

state of “Process Aborted” in an Execution Model.

In the revised version of the Execution Model, each

possible user-permissible transition between Activities

must be explicitly represented in the model with a

transition line between them. The actions that trigger the

transition should be specified on the transition line with a

transition label of A (Activity invoked by the user), C

(condition(s) required for activity execution), R (result of

Activity execution), or S (state associated with system

due to Activity). A list of causes of Activity failure and

possible actions the user or the system can take is

maintained, to explain why an activity fails and how the

user or the system can react

Compensation Activities (Activities that rewind the

results of others) needed to allow a transition between

two activities are implicit and controlled by the system.

It is suggested that UML swimlanes diagrams [10] be

adopted when it’s useful to describe how two or more

user types of the application collaborate in the execution

and completion of a transaction. No transition of the

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

Execution Model can be associated to the action of the

user selecting the “Back” navigation button in the

browser, which should be disabled in order to avoid

client-side to server-side data inconsistencies.

The above changes to the Execution Model provide

better visibility into the dynamic execution paths that the

user will experience while completing a specific

transaction. By making such paths explicit,

improvements in the transaction design can be more

easily accomplished.

2.2 Design Recovery

Given an existing Web site, the goal is to populate

an instance of the revised UWA model as described

above with data obtained by direct inspection and

analysis of the site’s content and structure as experienced

by a real user. The resultant model can then be used to

guide reengineering decisions based on objective

information concerning the quality attributes of the

business process’ implementation by the Web-based

application.

The model can be recreated using a three-step

prescriptive design recovery procedure: (1) formalization

of the transactions; (2) creation of the Execution Model;

and (3) construction of the Organization Model, for each

formalized transaction. A human subject-matter expert

can finish this procedure without any tool support.

However, the use of automated reverse engineering

technology [3] may improve the efficacy of the process.

Formalization of the Transactions

In the first step of the design recovery procedure, the

user-types of the application and their main goals/tasks

are formalized. A transaction is associated with each

operative goal/task. At the end of this step, the list of

transactions implemented by the application is obtained.

Creation of the Execution Model

For each of the transactions found in the first step of

the design recovery procedure, the Execution Model is

created by first performing a high-level analysis of the

transaction in order to gain a basic understanding of its

Activities and execution flow. The transaction is then

characterized as “simple” (linear), or “composite” (with

two or more alternative execution paths).

A first draft of the Execution Model is created for

each simple transaction identified by executing it in a

straightforward manner. All the operations available to

the user during the execution of the transaction are

invoked. Erroneous or incomplete data are provided in

order to model failures states and possible actions the

user can undertake. This information is used to refine the

Execution Model. Finally, the table that describes the

possible failure causes and the corresponding user

actions or system invocations is investigated for each of

the sub-Activities that have been found.

Construction of the Organization Model

Once the Execution Model has been created for a

transaction, the Organization Model can be constructed,

which will model the transaction from a static point of

view. In the case of a simple transaction, the Activity set

is determined by all the Activities and sub-Activities

encountered in the single flow of execution allowed to

the user. In the case of a composite transaction, the set is

composed of the union of the Activities and sub-

Activities of the single transaction that has been found

for the composite transaction.

For each Activity and sub-Activity, it is necessary to

define the value for the ACIDS PropertySet. The analyst

is required to refer to the definition given for each of the

properties and discover the value to be assigned to each

of them through direct inspection using the Web-based

application.

2.3 Analysis and Evaluation

The result of the design recovery procedure is a

model of the Web application transactions using the

revised version of the UWA Transaction Design Model.

The next step of the reengineering process is to perform

a user-oriented analysis and evaluation of the recovered

“as-is” design. This analysis can be based on

characteristics of the design such as its functional

effectiveness (how well it meets current business needs)

and technical efficiency (a reflection of the quality of the

design using software engineering measures).

This step of the reengineering process aims to define

a set of possible restructuring options for the current

design and implementation of the considered

transactions addressing the shortcomings highlighted by

the analysis. These options are then considered as input

to the redesign step.

2.4 Redesign

The final step of the reengineering process is the

redesign of the “as-is” transaction model, resulting in the

“to-be” version of the transaction design. Introducing the

changes defined during the analysis phase into the

recovered “as-is” design model produces the new design.

The recovered models are thus used as basis for

creating the new design.

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

3. The Recovered Transaction Design

The previous section outlined the transaction

reengineering process. The process was applied to the

Complete Flight Reservation transaction of the Alitalia.it

Web site [1]. The Complete Flight Reservation is one of

the two procedures offered by the Alitalia.it Web site for

booking a flight. The second way, called Fast Flight

Reservation, is a quicker way that assumes default

choices for optional parts of the flight reservation.

Complete details of the application of the design

recovery process and the recovered transaction design

for this Web site are provided in [11]. This section

summarizes the shortcomings (SC) of the current

transaction design based on the recovered model.

The recovered “as is” Organization and Execution

Models of the Complete Flight Reservation Web

transaction from the Alitalia.it airlines Web site are

shown in Figure 2 and Figure 3, respectively. Together,

the two models represent the current conceptual design

of the Web transaction as perceived by the user.

As described by the Organization Model in Figure 2,

in order to book a round-trip flight by means of the

Complete Flight Reservation procedure, the user is

required to execute six elementary Activities: identify

themselves to the system (Identification), search for a

flight (Define and Search for Flights), choose a flight

among available (View & choose Flight & Class among

available), specify passenger information and on board

services (Insert Passengers’ Information & Choose On-

board Options), confirm the chosen flight (View Flight

Fare without Taxes and Confirm Request of Flight

Reservation), and view the reservation details with total

price (View Reservation Details and Total Ticket Price).

All six Activities are required as shown by the

Requires_Visible type hierarchical relation that connects

them to the parent activity Complete Flight Reservation,

which represents the entire Web transaction. The

Organization Model also illustrates that none of the six

activities is Suspendable, thus the reservation procedure

must be completed in one session, or it must be aborted.

The Execution Model of Figure 3 describes the

execution rules that regulate the execution of the set of

Activities involved in the reservation transaction. In

particular, the model reveals several shortcomings in the

usability of the Web transaction of reservation. These

shortcomings (SC) are summarized below.

SC1: Executing the Identification Activity

The model exhibits that the execution of the

Identification Activity (logging into the system or

providing few personal information) causes the

reservation transaction to be restarted, no matter what its

state is. This is not a desirable situation.

<<AID_Activity>>

Complete Flight
Reservation

<<A_Activity>>

Identification

<<A_Activity>>

Identification

<<Requires_Visible>>

<<Requires One>><<Requires One>>

<<A_Activity>>

Login

<<AD_Activity>>

Insert Name &
Telephone #

<<Requires_Visible>>

<<Requires_Visible>>

<<Requires_Visible>>

<<Requires_Visible>>

<< Required >>

<<Compensates>>

<<AC_Activity>>

View & choose
Flight & Class
among available

<<

View Flight Fare without
Taxes and Confirm Request
of Flight Reservation

<<A_Activity>>

<<

<<ACD_Activity>>

View Reservation
Details and Total
Ticket Price

<<

<<AC_Compensation>>

~ Confirm Reservation

<<AC_Compensation>>

~ Confirm Reservation

Insert Passenger’s
Information & Choose
On-board Options

<<AC_Activity>>

<

Insert Passenger’s
Information & Choose
On-board Options

<<AC_Activity>>

<

<<AC_Activity>>

<<

<<AC_Activity>>

Define and Search
for Flights

<<

Figure 2: The “as-is” Organization Model of the “Complete Flight Reservation” Web transaction

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

SC2: Specifying Passenger Information and Options

The position of the Insert Passengers’ Information

& Choose On-board Options Activity in the execution

flow of the entire transaction is a concern. This Activity

must be executed every time the user tries to look for a

better flight by repeating the Define and Search for

Flights Activity, before knowing the fare associated with

a flight by means of the View Flight Fare without Taxes

and Confirm Request of Flight Reservation Activity.

SC3: Visualizing the Total Cost of a Flight

In the current design of the Complete Flight

Reservation Web transaction, the visualization of the

total price for the selected flight is incomplete. As shown

by Execution Model, the user has to execute four

Activities before they can know the total price of the

selected flight. Moreover, this information is needed

each time the user searches for new travel solutions by

changing some of the search parameters.

SC4: Restarting the Reservation Web Transaction

The recovered model illustrates the difficulty of

restarting the reservation process by repeating the search

for flight. The application explicitly provides a way to

start a new search (i.e., to re-execute the Define and

Search for Flights Activity) only when executing the

View & choose Flight & Class among available and not

later. In particular, there is no other way to complete this

activity, other than using the “Back” button in the

browser. Relegating navigation management to the

“Back” button of the browser can have dangerous

implications, in terms of the incoherence between the

states of the Web transaction as stored by the system

(server side) and the states as perceived by the user

(client side) [2].

4. The Restructured Transaction Model

The previous section identified several shortcomings

in the recovered transaction design. These shortcomings

suggest possible restructuring options to lead to

redesigned transaction model for the Web application.

The restructured Organization and Execution

Models for the Complete Flight Reservation Web

transaction are shown in Figure 4 and Figure 5,

respectively. Taken together, they describe a possible

new “to-be” design for the Complete Flight Reservation

transaction. The “to-be” versions of the Web transaction

design models (the Organization Model and the

Complete Flight Reservation

Identification

Login

Define and Search

for Flights

View& choose

Flight& Class

among available

Succeeded

Succeeded

InsertName &

Telephone #

ViewFlightFare without

TaxesandConfirm Request

of FlightReservation

ViewReservationDetails

and TotalTicketPrice

User call: Cancel

Abort

Succeeded

ABORTED

TRANSACTION

User call: New

Search

Abort

Succeeded

User_call: Login

User_call: Login

Failed

Retry

Failed

Retry

Abort

InsertPassengers'

Information& Choose

On-boardOptions

Failed

Retry

Failed

Failed

Retry

Abort

C:User notIdentified
Succeeded

(Reservationconfirmed)

Failed

C:Fareno longer available

Transaction Succedded

Figure 3: The “as-is” Execution Model of the “Complete Flight Reservation” Web transaction

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

Execution Model) derive from the “as-is” version

recovered during the reverse modeling phase as shown in

Figure 2 and Figure 3. The restructurings introduced in

the “to-be” models address the shortcomings noticed in

the recovered transaction design.

4.1 The Restructured Organization Model

The restructured Organization Model is shown in

Figure 4. The first change is to replace the Choose Flight

& Class Among Available Activity with a new Activity

named View available Flights, with Path, Total Ticket

Price, and Choose One among them. This new Activity

is intended to enable the user to have the information

about the available flights fitting their needs all at once.

This change means that the total price of each flight will

be shown immediately in the list of available flights

resulting from a search (the price shown will be the total

price including taxes). This change also considerably

lessens the user’s “trial and error” practice of looking for

best fare flights. This change is intended to overcome

shortcomings SC3 and SC4 discussed above.

To completely address shortcoming SC3, a slight

change is needed to the implementation of the View

Flight Fare without Taxes and Confirm Request of Flight

Reservation Activity. In consideration of the previous

change, the new version of this Activity will show all the

details of the ongoing flight reservation, including the

total ticket price with taxes, before the user’s

confirmation of the reservation request. A new Activity

called View Flight Details and Confirm Request of

Reservation takes its place.

The Activity Insert Passengers’ Information &

Choose On-board Options is split into two new

Activities: Insert Passengers’ Information and Choose

On-board Options. To address the problem reported in

shortcoming SC2, the former of these new Activities

should be Required and Durable, while the latter can be

Optional and Suspendable.

4.2 The Restructured Execution Model

The restructured version of the Execution Model

shown in Figure 5 reports most of the changes

Complete Flight Reservation

S

Identification

Login

Succeeded

Succeeded

Succeeded

Insert Name &
Telephone #

ViewReservation
Details

User Call: New Search

Failed

User Call:

New Search

Abort

User Call:

New Search

Failed

Retry

Failed

Retry

Abort

Failed

Retry

Abort

Retry

ABORTED

TRANSACTION

Succeeded

Abort

Failed

Retry

User_call: Choose On Board options

ViewFlight Details

andConfirm Request
of Reservation

Succeeded

User_call: Cancel

User_call: Cancel

Failed
Abort

C: Fare no longer available

Abort

Define and Search
for Flights

View available Flights,
with Path and Total
Price andChoose One

among them

Insert Passengers'

Information

User_call: Cancel

Succeeded

(Reservation confirmed)

User_call: Choose

On Board options S Choose
On-boardOptions

Figure 4: The “to-be” Execution Model of the “Complete Flight Reservation” Web transaction

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

introduced in the Organization Model as well as other

major changes dealing with the execution flow of the

process. The most important of these changes and the

motivations on which they are based are highlighted in

the discussion below.

As described by the model, in the proposed new

version of the Complete Flight Reservation Web

transaction the Identification Activity will be executable

at any time and concurrent to any Activity of the

Complete Flight Reservation Web transaction. This is

represented in the model enclosing the Identification

Activity and all the other Activities required to

accomplish the flight reservation between

synchronization bars. The synchronization bars also

indicate that executing the Identification Activity will

not cause the loss of state of the transaction, forcing the

user to start it over again. The Identification can even be

delayed and accomplished later in the Activity by the

user just before a reservation request is confirmed. This

change is intended to address the shortcoming SC1.

Thanks to the changes in the Activities composing

the restructured Web transaction, the user will now be

able to search and learn details about available flights,

including their total cost, in a single step, just by

executing the Define and Search for Flights Activity. As

shown by the execution flow depicted in the proposed

restructured version of the Execution Model, the user is

required to provide the passengers’ information only

when they have decided on a particular flight that fits

their request and satisfies their budget.

As shown by the available transition lines, the

Activity of Define and Search for Flights can now be

repeatedly executed from any point of the “Complete

Flight Reservation” transaction until the reservation is

confirmed. The application is supposed to explicitly

provide the user with the option to invoke the User_call

New search. This solution addresses the “trial and error”

scenario described above.

The Activity of Choose On-board Options is now

separated from the Activity of Insert Passengers’

Information, delayed in the transaction after the

completion of the reservation and having the

Suspendable property. Its execution is optional; it will be

executed only if the user chooses it via the action

User_call Choose on board options.

4.3 Discussion

We are aware that some of the criticisms brought

against the recovered transaction design of the Alitalia.it

reservation transaction discussed in this section and

identified as shortcomings could derive from conscious

choices made by the application’s designers. We do not

claim that the proposed redesigned transaction models

for the “to-be” version of the application represent the

best version of the transaction we analyzed. The

restructuring interventions we proposed, in fact, are

intended to offer only a possible solution to the weakness

that we, as users, observed in the structure and the

execution flow of the transaction we examined. We

stress that defining what is “better” from the user point

<<AID_Activity>>

Complete Flight

Reservation

<<A_Activity>>

Identification

<<A_Activity>>

Identification

<<Requires_Visible >>

<<Requires One >><<Requires One >>

<<A_Activity>>

Login

<<A_Activity>>

Login

<<AD_Activity >>

Insert Name&

Telephone #

<<Requires_Visible >>

<<Requires_Visible >>

<<Requires_Visible >>
<<Requires_Visible >>

<< Optional >>

<<Compensates >>

<<AC_Activity>>

Viewavailable Flights,

with Path, Total Ticket

Price, and Choose One

among them

<

<<AC_Activity>>

Define and Search

for Flights

<<

<<ACD_Activity>>

Insert Passengers ’

Information

ViewFlight Details

and Confirm Request

of Reservation

<<A_Activity>> <<ACD_Activity>>

View
Reservation

Details

<<

<<AC_Compensation>>

~ Confirm Reservation

<< Optional >>

<<ACDS_Activity >>

Choose On -

board Options

Figure 5: The “to-be” Organization Model of the “Complete Flight Reservation” Web transaction

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

of view is beyond the objectives of this work. This

concept is tightly related to the requirements for the

particular application and business process model

considered.

The objective in the illustrative example was to

show that the reengineering technique (and the models it

adopts) is able to capture and describe the user’s

perception of the processes implemented by a Web

application. The technique has been verified to enable

the analyst to model the processes from the user

perspective and, subsequently, to discuss and evaluate

possible restructuring interventions that can improve the

experience of using the services the application offers.

Thanks to the revised version of the UWA

Organization and Execution Models it adopts, the

reengineering process is able to represent the

transactions implemented in a Web application with an

high level of abstraction and to model them according to

the way they are perceived by the user. The usefulness of

the reengineering technique can be emphasized in the

fact that it enables the analyst or the designer to:

� Draw information that describes how the reverse-

engineered Web transaction is experienced by the

user, and how the application behaves when

executing it;

� Represent the recovered information in a clear and

sharable way by drawing the models the technique

adopts;

� Evaluate the current design of the transaction from

the user perspective, and identify undesirable

shortcomings; and

� Define possible solutions to the revealed

shortcomings to produce a restructured “to-be”

version of the transaction design that better meets

user expectations and aids Web site evolution.

5. Summary

An approach to transaction design that concentrates

on system- and data- centered issues usually considered

by the database theory (e.g., data consistence,

concurrency control, and state management) results in

shortfalls in usability (intuitiveness, simplicity,

effectiveness) of the services offered by the application

by means of the transactions. In contrast, designing Web

transactions with a user-centered approach can

considerably improve the user’s experience in using the

application. A Web transaction can be reengineered to

meet these objectives using the process described in this

paper. The restructuring can be done without violating

the business rules implied by the business process that

the Web application is intended to implement.

To illustrate the transaction reengineering process,

restructuring options were proposed for the recovered

transaction design of Alitalia.it’s travel reservation

system. The design recovery procedure relies on a

conceptual model that is based on extensions to the

Transaction Design portion of the UWA framework. The

prescriptive recovery procedure is composed of three

steps, which can be accomplished by a human subject-

matter expert with or without tool support.

One area of future work that we see as of paramount

importance is the development of a testing methodology

to assess the efficacy of the restructured transaction

design. Evidence-based techniques such as empirical

studies could be used to verify that the resultant Web site

is “better” in some quantifiable way than the original.

The difficulty is in quantifying “better,” both for the

designer and the user. For the designer, one measure

might be shorter time to market for a complex Web

application, while still retaining and even improving

functionality and lower subsequent maintenance costs.

For the user, the measure is likely to remain usability—

something that is notoriously difficult to measure.

We intend to explore the possibility of exploiting

established techniques from Web testing and usability

research as a means of performing assessment of the

reengineering process. The results of these studies will

be published in a suitable public forum.

Acknowledgements

Tauhida Parveen contributed to the development of an

early draft of this paper.

References

[1] Alitalia. Online at www.alitalia.it.

[2] Baresi, L.; Denaro, G.; Mainetti, L.; and Paolini, P.
“Assertions to Better Specify the Amazon Bug.”
Proceedings of the ACM International Conference on
Software Engineering and Knowledge Engineering
(SEKE 2002: Ischia, Italy, 2002).

[3] Chikofsy, E.; and Cross, J. “Reverse Engineering and
Design Recovery: A Taxonomy.” IEEE Software 7(1):13-
17, January 1990.

[4] Distante, D. “Reengineering Legacy Applications and
Web Transactions: An extended version of the UWA
Transaction Design Model.” Ph.D. Dissertation,
University of Lecce, Italy. June 2004.

[5] Distante, D.; Parveen, T.; and Tilley, S. “Towards a
Technique for Reverse Engineering Web Transactions
from a User’s Perspective.” In Proceedings of the 12

th

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

IEEE International Workshop on Program
Comprehension (IWPC 2004: June 24-26, 2004; Bari,
Italy). Los Alamitos, CA: IEEE CS Press, 2004.

[6] G. Booch, J. Rumbugh, I. Jacobson, “The Unified
Modeling Language User Guide”, (Rational Corporation
Software), Addison-Wesley.

[7] G. Rossi, H. Schmid, F. Lyardet, “Engineering Business
Processes in Web Applications: Modeling and Navigation
Issues.” Proceedings of the 3

rd
International Workshop on

Web Oriented Software Technology (IWWOST 2003:
Oviedo, Spain, 2003).

[8] H. Schmid, G. Rossi, “Modeling and Designing Processes
in E-Commerce Applications.” IEEE Internet Computing,
January/February 2004.

[9] J. Bellows, “Activity Diagrams and Operation
Architecture”, CBD-HQ White paper, www.cbd-hq.com,
Jan. 2000.

[10] Object Management Group (OMG), “Unified Language
Modeling Specification, version 1.5”, www.omg.org, Mar.
2003.

[11] Tilley, S.; Distante, D.; and Huang, S. “Design Recovery
of Web Application Transactions.” Submitted to The 11

th

IEEE Working Conference on Reverse Engineering

(WCRE 2004: Nov. 9-12, Delft, The Netherlands). June
2004.

[12] UWA (Ubiquitous Web Applications) Project,
“Deliverable D3 Requirements Investigation for Bank121
pilot application”, http://www.uwaproject.org, 2001.

[13] UWA (Ubiquitous Web Applications) Project,
“Deliverable D6: Requirements Elicitation: Model,
Notation and Tool Architecture”, www.uwaproject.org,
2001.

[14] UWA (Ubiquitous Web Applications) Project,
“Deliverable D7: Hypermedia and Operation design:
model and tool architecture”, www.uwaproject.org, 2001.

[15] UWA (Ubiquitous Web Applications) Project,
“Deliverable D8: Transaction design”,
www.uwaproject.org, 2001.

[16] UWA (Ubiquitous Web Applications) Project,
“Deliverable D9: Customization Design Model, Notation
and Tool Architecture”, www.uwaproject.org, 2001.

[17] UWA (Ubiquitous Web Applications) Project, “The UWA
approach to modeling Ubiquitous Web Application”,
www.uwaproject.org, 2001.

Proceedings of the Sixth IEEE International Workshop on Web Site Evolution (WSE’04)
1550-4441/04 $ 20.00 IEEE

