
Recovering Conceptual Models from Web Applications 
Giuseppe Antonio Di Lucca 

Research Centre On Software 
Technology, University of Sannio 

Via Traiano, Palazzo ex Poste 
82100 Benevento, Italy 

dilucca@unisannio.it 

Damiano Distante 
Research Centre On Software 

Technology, University of Sannio 
Via Traiano, Palazzo ex Poste 

82100 Benevento, Italy 

distante@unisannio.it 

Mario Luca Bernardi 
Research Centre On Software 

Technology, University of Sannio 
Via Traiano, Palazzo ex Poste 

82100 Benevento, Italy 

mlbernar@unisannio.it 
 
 

ABSTRACT 
This paper proposes a reverse engineering approach for 
abstracting conceptual user-centered models from existing Web 
applications to re-document them at a high level of abstraction 
and from a user perspective.  
The recovered models are specified by referring to the Ubiquitous 
Web Application (UWA) design methodology. UWA models are 
able to describe the structure of the application contents, the 
semantic relations among contents, the different views on 
contents the application offers to users, and the navigation paths 
and the navigation nodes used to present contents to users. 
The approach exploits existing reverse engineering methods and 
tools to extract fine grained structural information from the 
analyzed applications and abstracts UWA models from them. 
The architecture of a tool to support the reverse engineering 
approach is described and the results from some preliminary 
experiments are discussed.   

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement – Documentation; Restructuring, reverse 
engineering, and reengineering.  

General Terms 
Documentation, Design. 

Keywords 
Reverse Engineering, Web Applications, Documentation, 
Conceptual modeling, Design, UWA. 

1. INTRODUCTION 
In the last years we have seen a wide diffusion of Web 
Applications (WAs) that are requested to provide and support 
functionalities and services more and more complex. WAs have 
therefore evolved from the earlier “simple” applications allowing 
some e-commerce functionality to complex software systems 

providing their users with the access to/management of complex 
services. Requirements for these applications take also into 
account the growing number of increasingly exacting users asking 
for high quality applications. 

To face the challenges of building such types of WAs, several 
methodologies have been proposed in the literature. These 
methodologies support the disciplined design, development, 
maintenance and evolution of WAs [1]-[5][10][11].  

Unfortunately, mainly due to the pressure of short time-to-market 
and extremely high competition, such development 
methodologies, as well as good software engineering principles, 
usually are not applied in the practice. As a consequence, analysis 
and design documentation in existing WAs is very poor, if not 
completely absent. 

WAs are also characterized by continuous maintenance and 
evolution operations to meet new functional and not functional 
requirements of the evolving context in which WAs are used. For 
example, new requirements may derive from the need to meet 
some new business rules, the need to adopt new technology, as 
well as the need to implement some ad-hoc functionality. 

Very often such a maintenance and evolution interventions are 
just implemented without being documented. Most of the times, 
the reasons behind this way to proceed are found again in time-to-
market constraints but also in the relative quickness in which 
WAs code can be modified and new versions of the application 
deployed. When for a given WA some design documentation is 
available, this erroneous way to proceed causes its degradation 
and misalignment compared to the application implementation 
state. 

The lack of adequate and up-to-date documentation makes the 
maintenance and evolution of a given system becoming a difficult 
and risky task, potentially compromising the effectiveness and 
correctness of the whole system. In this common situation the 
usage of tools and approaches for the semi-automatic recovery of 
models and documentation from the system to maintain has been 
proved to be very useful, reducing the effort and risks of the task 
to be executed. 

Several approaches and tools for the reverse engineering of WAs 
have been proposed in the literature. Some of them aim at 
obtaining an architectural view of the WA that depicts WA 
components (i.e., pages, or inner page components) and their 
relationships at different levels of detail [12][13][14]. Some 
others [15] allow abstracting a description of the functional 
requirements implemented by the WA which is cast into UML use 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SIGDOC'06, October 18–20, 2006, Myrtle Beach, South Carolina, USA. 
Copyright 2006 ACM 1-59593-523-1/06/0010...$5.00. 



 

case diagrams [16]. Some others else [17][18] recover UML class 
diagrams [16] of the application business objects and the logical 
relationships between them  or models of the business processes 
implemented by the WA [7][8][9]. 

When executing a maintenance or evolution task it might be 
highly beneficial to have user-centered conceptual models of the 
WA. Such models, indeed, enable the maintainer to move from 
the user perspective on the WA when deciding on some 
functionality or some characteristics to be added, removed or 
improved. The conceptual models of a WA are also useful when 
migrating it towards different technologies. Indeed, as these 
models are independent from implementation and technological 
aspects, they are suitable for being implemented in any possible 
technology. 

WA conceptual models may include the design of: (i) the contents 
provided to the user and the relations among them; (ii) the 
navigational paths the user can follow and the information nodes 
the user is presented; (iii) the operations the user can execute and 
the workflows implemented to assist the user in executing a task 
in a certain business process. 

Most of WA reverse engineering methods and tools proposed in 
the literature enable the recovery of models at a low level of 
abstraction (often in terms of pages and page components), and 
aren’t able to describe the application from the user-perspective. 
Also the results of these tools offer partial views on the 
application (navigation structure, business objects, business 
process, etc.) and use different representations and meanings.  

In this paper we propose an approach to reverse engineering 
conceptual models from existing WA by referring to the 
Ubiquitous Web Application (UWA) design methodology [2][3]. 
The approach builds on existing WA reverse engineering methods 
and exploits existing tools, using the information they recover to 
abstract UWA models. Since most of the analysis and abstraction 
process involve the HTML client pages that the application 
presents to the user, the method is applicable to most of the 
existing WA. 

The paper is structured as follows. Section 2 synthetically 
describes the UWA design methodology and its main models and 
design concepts with some examples. Section 3 presents the 
approach for recovering the considered UWA models from the 
code of an existing WA. Section 4 describes the overall 
architecture of a tool that we are developing to support the reverse 
engineering process. Finally Section 5 briefly reports on some 
preliminary experiments and introduces future work. 

2. THE UWA DESIGN METHODOLOGY: 
MODELS AND DESIGN CONCEPTS 
The UWA design framework includes a set of methodologies, 
meta-models, and tools for the user-centered design of data and 
operation intensive ubiquitous (i.e., multi-channel, multi-user and 
generally context-aware) WAs. UWA models provide separated 
but related views on the design of a WA. Each UWA model is 
focused on a different aspect characterizing a WA and uses a 
UML-based notation. 

UWA models are conceptual user-centered models, i.e., they 
specify from a user perspective design aspects meaningful for the 
users of the WA. All the different types of users of the WA are 

considered during the design process and, if necessary, different 
model views are realized for each of them. 

The typical UWA design process is structured into four main 
activities: 1) Requirement Elicitation, 2) Hypermedia and 
Operation Design (accomplished by using the W2000 [1] design 
methodology), 3) Transaction Design, and 4) Customization 
Design.  
In this paper the focus is on the UWA Hypermedia Model which 
results from the UWA Hypermedia Design activity [19] and 
includes the Information model, the Navigation model and the 
Publishing model of the WA.  
Figure 1 reports an excerpt of the UWA Hypermedia meta-model 
that highlights the Information meta-model and the Navigation 
meta-model.  
The meta-model is represented by means of the UML MOF [20]. 

 
Figure 1 An excerpt of the UWA Hypermedia meta-model. 

The UWA Information Model is composed of the Hyperbase and 
the Access Structures of the WA. The Hyperbase describes the 
structure of the WA contents and the relations among them in 
terms of Entities and Semantic Associations. The Access 
Structure defines the set of Collections that represent views of 
interest for the user on the Hyperbase. 

An Entity is related to an object or a concept of the “real world” 
making sense for the user. Entities are the fundamental 
information elements defined by UWA. An Entity is organized 
into Components (in the same sense as books are organized into 
chapters). A Component holds all the content that corresponds to 
a “chapter” of the Entity. Components can be further decomposed 
in Sub-Components and Sub-Components in Base Components. A 



 

Base Component is finally defined in terms of Slots, which are 
the elementary information element of the UWA Information 
Model. 

Figure 2 shows the portion of a page from the GAP1 e-commerce 
clothing Web site presenting a product in the catalog. The 
information characterizing each product, as seen by the user, 
includes the product name, the product code, the product textual 
description, a small and a large picture of it, the different 
variation (versions) in which it is available, and the price. 

 
Figure 2 A portion of a page showing a product at GAP.com 

For each version of the product (i.e.; regular, tall), the set of 
available sizes and colors are shown. Additional information, such 
as suggestions on how to wash and treat the product (fabric & 
care), might also be available. The UWA Entity diagram 
modeling the product information is shown in Figure 3. In 
addition to describing the set of elementary granules of 
information characterizing each product (referred as Slots in 
UWA), it represents the organization of these Slots into 
Components (Overview, Fabric & Care, and Version), the 
cardinality of each Slot and Component, as well as the minimum, 
maximum and typical number of instances of the Entity Product 
in the catalog.  

 
Figure 3 The UWA Entity diagram corresponding to the 

Product information object at GAP.com 
Entities may be related to each-other by means of Semantic 
Associations. A Semantic Association connects two different 

                                                                 
1 www.gap.com – accessed on May 2006. 

Entities and has a semantic associated to it; moreover it creates 
the “infrastructure” for a possible navigation path. 

To refer to the GAP Web site, the hyperlink named “you’ll also 
like” appearing on the side of the product shown in Figure 2 
brings the user to the page shown in Figure 4.  

Besides presenting an excerpt of the information associated to the 
original product, this page also reports a list of products previews. 
These are the previews of the products suggested as good match 
with the original product. The user will be able to navigate from 
each of the product previews to a page similar to the one shown in 
Figure 2 providing detailed information on the chosen product. 

 
Figure 4 A portion of the page showing a product and the list 

of products suggested as a good match with it (associations 
“you’ll also like”) at GAP.com 

Figure 5 represents the UWA Semantic Association diagram 
modeling the association between a product of the GAP catalog 
and the products that match well to it. The Center of the 
Association identifies the preview information provided for each 
of the matching products.  

 
Figure 5 The UWA Semantic Association diagram 

corresponding to the association “you’ll also like” between 
products at GAP.com 

Entities and Semantic Associations may take part in Collections. 
A Collection is an organized set of objects, called members, 
created in order to assemble together all the objects that, under 
certain circumstances, can be interesting for the user. Objects may 
be Entity instances and/or their Semantic Associations. 

Figure 6 shows one of the collections of products available on the 
GAP Web site. In particular the ones shown are the products of 
the category “Jacket” in the department “Outerwear”. Each 
product of the collection is presented with some preview 
information (including the small picture, the name and price) and 
a link connecting to the page providing full description of the 
product. 



 

 
Figure 6 A portion of the page showing a collection of 

products belonging to the Outwear category at GAP.com 
The UWA Collection diagram associated to the collection of 
products in Figure 6 is shown in Figure 7. Besides showing the 
Entity Types taking part in the collection and the information 
making part of the Collection Center, the diagram also specifies 
the cardinality of the members of the collection and the 
cardinality (min, max, expected) of the Collection.  

 
Figure 7 The UWA Collection diagram corresponding to the 

collection of Products of a given category at GAP.com 
The UWA Navigation Model is made up of Nodes and Clusters. 
A Node defines a unit of information delivered as a whole by the 
application to the user from/to which the users can navigate. A 
Node may be derived from either: (i) an Entity, (ii) a Semantic 
Association, (iii) a Collection Center. A Cluster is a container 
holding together a number of Nodes and defining the navigation 
pattern among the interconnected Nodes (i.e.; guided tour, index, 
etc.). A default Node is defined for each Cluster, specifying where 
the navigation should start when the Cluster is accessed. UWA 
defines three different categories of Clusters: Structural Clusters 
(containing Nodes that are pieces of the same “object”), 
Association Clusters (containing nodes related together via a 
Semantic Association), and Collection Clusters (containing Nodes 
that are parts of a Collection). 

Figure 8 shows the UWA Cluster diagram that models the 
structural navigation between the Components of the Entity 
product in the GAP Web site. The Node “Product Overview” is 
the default Node of the Cluster. From this Node it is possible to 
navigate towards the Nodes showing the Slots included in the 
other two Components of the Entity “Product”. 

 
Figure 8 The UWA Cluster diagram describing the 

navigations between the Components of the Entity ‘product’ 
at GAP.com 

Each of the UWA design concepts can appear in an application in 
two ways: as an instance of “Type” or as one-of-a-kind, i.e., 
“Single”. A “Type” defines a “categories of objects” sharing some 
common properties that are defined by the type. A “Single” 
defines an object that does not share its properties with any other 
object, thus having cardinality 1 in its instances. The Entity 
“Product” and the other UWA concepts found for the GAP Web 
site and described above are all instances of “Types” or also 
“Typed” concepts. On the opposite, the Entity “About GAP Inc.” 
which provides information on the GAP Company is an example 
of Single Entity. In the following of the paper, unless otherwise 
specified, we’ll refer to UWA concept types omitting the “Type” 
suffix. 

3. RECOVERING UWA MODELS FROM 
EXISTING WEB APPLICATIONS 

3.1 The Reverse Engineering Process 
A reverse engineering process to recover the concepts included in 
the UWA Information and Navigation Model from the code of 
undocumented existing WAs has been defined. The process is 
based on the static analysis of the WA pages and is structured as 
follows: 

1. Identification of Entity Types 
2. Identification of Semantic Association Types 
3. Identification of Collection Types 
4. Identification of Node Types and Cluster Types 

The methods to fulfill each step of the process are described in the 
following sub-sections. 

3.2 Identifying UWA Entities and Semantic 
Associations 
Entities and Associations represent, respectively, the relevant 
domain business object processed by the WA and the 
relationships among them. A UWA Entity is a group of related 
attributes (Slots) making up a more abstract concept. Slots may be 
grouped into Components in turn. Techniques searching the 
source code for groups of logically related data representing the 
attributes of Classes can be used to identify Entities. These 
techniques are usually based on those language mechanisms that 
allow groups of related data implementing a relevant concept, 
either from the domain of the application or from domain of the 
solution, to be defined in the code. These mechanisms include 



 

those for the definition and use of data structures such as records, 
user data types, and table schemas in databases, or the state of 
objects. 

Although most web technologies and languages (such as HTML, 
ASP, PHP, VBS, JSP, etc.) provide syntactic constructs for 
declaring data groups (such as RecordSets, Collections, and 
Classes), they are not used frequently. Moreover, since a WA is 
usually implemented as a multi-tier system, a simple WA code 
analysis may not allow the identification of the persistent data 
stores and the data store schemas because they can be deployed 
on a different tier of the application, and may be inaccessible.  

The method proposed in [17] and [18] to identify the attributes of 
a WA business objects has been exploited to identify UWA 
Entities. The method is used to identify the attributes (Slots) 
making up an Entity. In the following we summarize the way the 
attributes are identified. 

We consider as candidate to form the attributes of an Entity the 
groups of data items that are involved in: (i) the same user 
input/output operation (such as data displayed in input/output 
HTML forms, or HTML tables); (ii) in the same read/write 
operation on a data store (such as an ASP Recordset, or an array 
of heterogeneous data in PhP language), (iii) the data set involved 
in a database query operation. In addition, data groups that are 
passed throw distinct pages or instances of Classes used in the 
pages are taken into account. 

The rationale behind this choice is that the set of data items that a 
user enters in an input form, or that are shown to a user by an 
output report, usually represents a concept of interest for the user 
in the domain of the application. Analogously, data items that are 
read from, or written to a persistent data store may be 
representative of meaningful concepts of the business domain. 

Groups of related data items are found also by exploiting the 
method proposed in [21] and [22] to identify groups of cloned 
web client pages. Each group of cloned pages is characterized by 
the same control component (i.e., the set of items - such as the 
HTML code and scripts - determining the page layout, business 
rule processing, and event management), but a different data 
component (i.e., the set of items - such as text, images, 
multimedia objects - determining the information to be 
read/displayed from/to a user). Groups of pages having the same 
control component will show the same rendering and functional 
behavior. Thus they can be considered as equivalent pages (i.e. 
clones), just differing for the data component they contain. The 
data component of each group of cloned pages is then analyzed to 
identify groups of common data items contained in each page of 
that group. These items usually correspond to labels of fields, or 
table headings, showing the values of some attributes of domain 
Entities. Thus the groups of common data items identified for 
each group of cloned pages can be considered as attributes of 
candidates Entities. 

After having solved the problem of synonyms (i.e., attributes 
identifiers with different names but same meaning) and 
homonyms (i.e., attributes identifiers with the same name but 
different meanings), the recovered data groups are automatically 
analyzed in order to identify the ones that are more likely to be 
associated to Entities. The analysis is based on two heuristic 
rules: (i) the more the references of a same data group in the code, 

the greater the likelihood that it represents a meaningful concept; 
(ii) groups with a small size may represent more simple and 
atomic concepts than larger groups, and larger groups may 
represent more complex concepts made up of joined smaller 
groups. 

An automatic procedure organizes the groups of data into a list 
and ranks each group according to some criteria (such as the 
number of occurrences of the groups) as well as re-organizes the 
groups themselves (such as when a group is included into a larger 
one) producing an ordered list including the set of data groups 
that have been selected as candidate Entity. Each group in this list 
will have to be assigned with a meaningful name describing the 
concept it represents, i.e. the Entity. Each data item will 
correspond to a Slot of an Entity and each sub-group of data items 
will be candidate to make up a Component. If a group including 
one or more other groups presents more references than the 
included groups, just the container group will be considered as a 
candidate Entity, while the smaller ones will not (this can be 
considered as a Component of the Entity, and its attributes as 
Base Components).  

A Semantic Association will be identified for each set of 
candidate Entities having common attributes. Each common 
attribute (Slot) will be assigned just to one Entity of the set, and 
all these Entities will be linked by a UWA Association. The 
software engineer intervention may be required to establish the 
correct assignment of the attributes to the Entity. 

Moreover, Semantic Associations are identified by analyzing the 
content of forms, tables, and others reports displayed to users: if 
attributes from different Entities are required by a form or 
displayed in a report, an Association will be considered to exist 
between those Entities. For example, for an e-commerce 
application, this would be the case when a Customer has to fill in 
a form with some of his/her personal data, and data of the 
Products he/she wants to buy. In this case, a Semantic Association 
named ‘Purchase’ between the ‘Customer’ and ‘Product’ Entities 
can be identified. 

A validation of the candidate Entities and Associations found in 
this step has to be carried out before proceeding to the next step. 
Of course knowledge of the application domain would help the 
needed validation activity.  

A cross reference list is generated to trace the pages where 
each identified Entity/Association (i.e., their attributes) was 
found. The cross reference list shows: the names of the identified 
Entities and Associations, their attributes, the name of the pages 
where each Entity/Association is referred, the name of the Slots 
referred in each page. In the case of static client page (i.e. web 
pages whose content is fixed and stored in a file on the web 
server), the name of the web page is the name of file storing the 
page content; For dynamic client pages (i.e. client pages 
generated at run time by server pages), the page name 
corresponds to the name of the server page generating that client 
page. 

3.3  Identifying Collections 
UWA Collections are organized sets of Entity or Association 
instances (Collection members) representing views of interest for 
a user. A Collection lists a sub-set of attributes for each member, 
and usually provides an index (e.g., a list of hyperlinks) to access 



 

more detailed member information. A UWA Collection Centre is 
associated to the index of the Collection. Examples of Collections 
are: the list of products in a category in an e-commerce Web site, 
a list of documents to browse in an electronic library. 

The identification of Collections is based on the ways usually 
used to implement them. These include: (i) the usage of forms 
reporting a list of fields with data related to the attributes of an 
Entity or the Entities involved in an Association; (ii) the usage of 
a table where each column reports the values of an attribute of an 
Entity or an Association (each row of the table represents an 
instance of the Entity/Association); (iii) a list of hyperlinks to 
pages reporting more detailed information about an Entity or an 
Association; (iv) full text reporting a list of fields with the values 
of an Entity or an Association. The HTML code of web client 
pages is analyzed to identify Collection and Collection Centre. In 
the case of dynamic client pages (i.e., client pages generated at 
run time by server pages) these are ‘captured’ and stored to 
analyze the generated code making up the pages.  

First the pages referring Entity/Association attributes are selected. 
The code of these pages is analyzed to verify the presence of 
those structures (forms, table, list of hyperlinks, etc.) that could 
implement a Collection, or a Collection Center. In particular, the 
code is searched for identifying: (i) forms with repeated fields 
having the same labels corresponding to Entity/Association 
attributes; (ii) tables with a header made up of Entity/Association 
attributes; (iii) tables whose cells contain words/labels 
corresponding to Entity/Association attributes; (iv) sequences of 
hyperlinks whose labels are Entity/Association attributes. Clone 
analysis is useful in looking for Collections too. In this case the 
aim is to find cloned pieces of HTML code repeated in the page to 
show the same structure with different values of an 
Entity/Association, e.g. the row of a table, or the line of a bullet 
list containing Entity/Association attributes repeated more times 
in the page. 

The identification of Web Interaction Design Patterns (WIDP) in 
web pages can be useful to identify Collections. WIDPs provide a 
solution to classical interaction problems in WAs. Specific 
WIDPs have been proposed in the literature [23]. The WIDPs 
belonging to the ‘Managing Collections’ class (e.g. View, 
Collector, List Builder, List Sorter, Table Filter, Table Sorter, 
Parts Selectors) are possible ways to implement Collections. In 
[24] an approach to support the automatic identification of WIDPs 
in a web page is proposed. This method can be used to verify in a 
page the presence of a pattern implementing a Collection. 

All the above described techniques have been exploited to get a 
more precise identification of Collections and to reduce the 
number of false positives. Problems arise when a Collection is 
implemented by a plain full text: in this case the above techniques 
may not be fully adequate.  

A Collection Center is identified by searching for a list of 
hyperlinks in a page, where all the hyperlinks point to: (i) the 
same server page (but passing each time some different parameter 
values) that dynamically builds a client page whose contents 
report the required information; (ii) to different static client pages 
forming a set of cloned pages. 

This step will result in a list of candidate Collections, and 
Collection Centers, that have to be validated by the analyst. Each 

Collection/Collection Center will be assigned a meaningful name 
to univocally identify it. 

Also in this step a cross reference list reporting the identified 
Collections and the client pages referring them is produced. 

3.4 Identifying Nodes and Clusters  
A Node is a unit of information that an application will provide or 
ask to a user as a whole. The information contained in a Node 
may refer to an Entity/Association, or a portion of them if just 
some of their attributes are reported in the Node, as well as to a 
Collection. 

Nodes are identified by associating them to the elements of client 
page displaying/requiring information from/to the user.  

Also in this case, first the client pages related to Entities, 
Associations, and Collections are selected. Each page is then 
analyzed to: (i) identify which attributes of each Entities, 
Associations, or Collections are referred in the page; (ii) associate 
a Node to each group of attributes (if the same group of attributes 
is present in different pages, they will be associated to a unique 
Node modeling them); (iii) identify hyperlinks connecting Nodes 
in the same page or in different pages. If a page contains more 
than one Node, a Cluster of Nodes will be defined. A Cluster is 
also defined when a hyperlink exists between two Nodes (in the 
same page or in different pages). 

A list of candidates Nodes and Clusters is the result of this step. 
Each Node and each Cluster will be assigned a meaningful name. 

4. A TOOL TO SUPPORT THE REVERSE 
ENGINEERING PROCESS 
In order to support the activities of the proposed approach, a RE 
tool, called RE-UWA, is under development. It aims to provide 
software engineers with a useful and extensible environment 
supporting WAs re-documentation, comprehension, maintenance 
and testing tasks.  
Figure 9 shows the overall layered architecture of the RE-UWA 
tool.  
At the lower layer we find the Web Application Reverse 
Engineering (WARE) tool [13] and Clone Detector [22] tool. 
WARE statically analyzes the source code of the WA and extracts 
notable information about: (i) the pages making up the WA; (ii) 
the inner component of each page (e.g., forms, scripts module, 
frame, applet, etc.); (iii) the different types of hyperlinks 
connecting the pages (e.g., link, build, submit, redirect). The 
extracted information are stored into the WARE Repository and 
used to abstract design and analysis documents represented by 
UML diagrams according to Conallen’s UML extensions [11]. 
The WARE tool includes modules to support the abstraction of 
UML class diagrams at the conceptual business level [17][18] as 
well as modules to identify Web Interaction Patterns [24]. Also 
the abstracted information is stored in the WARE Repository.  
The Clone Detector tool statically analyzes the web client pages 
(Web client pages dynamically built from server pages are 
‘captured’ on the fly and stored to be analyzed successively) to 
identify cloned pages according to the approach proposed in [21] 
and [22].  



 

The RE-UWA Abstractor Layer includes the components to 
abstract the UWA Information and Navigation Model concepts 
according to the process described in the Section 3. The WARE 
Importer component extracts the needed information from the 
WARE Repository and arranges them in a format suitable for the 
Abstractor modules. The Information Model Concepts Abstractor 
is responsible for recovering candidate UWA elements of the 
Hyperbase and the Access Structure Models (e.g., candidate 
Entities, Associations and Collections).  The Navigation Model 
Concepts Abstractor is responsible for recovering the elements of 
the Navigation Model (i.e., candidates Nodes and Clusters). The 
Concepts Validator module mainly implements a user interface 
allowing the browsing of the recovered candidate elements. By 
using this module the analyst will be able to decide on if to 
accept, make some modification before accepting, or reject the 
recovered candidate UWA elements. The validated recovered 
UWA concepts are stored into the Metadata Repository. 
The top layer of the RE-UWA architecture is the UWA tool set 
developed as Rational Rose add-in to support the UWA 
methodology. This tool is able to create and manage UWA 
models using stereotyped UML diagrams within the Rose 
environment [25]. The tool includes an Import/Export component 
which is responsible for importing/exporting UWA models in an 
XMI format. 

 
 

Figure 9 The overall architecture of the RE-UWA tool. 
All the UWA add-in modules share the following common 
structure: 

- Custom menus that send messages to UWA COM objects. 
- Extensible properties. The UWA model elements can be 

extended with additional properties (UML tagged-values).  
- Stereotypes (along with visual customization).  

- Events (COM Server). Each add-in registers for a set of 
events where a method on a UWA COM object is called. 

- Automatic documentation report generation. 
- XMI-based persistence to store and load UWA model 

instances. 
The RE-UWA Model Emitter is in charge of generating the UWA 
Information and Navigation Models of the analyzed WA 
according to the UWA Rose Add-in specified XMI format. 
The RE-UWA Abstractor layer has been designed to provide a 
generic abstractor API, supporting interoperability to a great 
extent. Hence more intermediate representations targeting many 
others RE environments can be supported in the future. 
At current time a prototype of the WARE Importer and the 
Information and Navigation Abstractor modules have been 
developed. 

5. RESULTS AND CONCLUSIONS 
Some preliminary experiments were carried out to asses the 
feasibility and the effectiveness of the proposed approach. 
In a first experiment, some simply web pages were developed: 
each page implemented just one of the UWA concepts. The pages 
were developed by undergraduate students and different 
techniques were used to implement a same concept (in particular 
to implement Collections). The approach showed to be successful 
in identifying all the UWA concepts. It is worthwhile to note that 
the technique based on the identification of cloned pages showed 
to be better to identify concepts (in particular Entities and 
Collection) when just plain text were used in client pages to 
implement them. 
A second experiment considered a complete, small size, WA 
developed by graduate students. The application allows users to 
make predictions about football matches. Also in this case the 
approach proved its effectiveness by identifying correctly the 
several Entities (e.g., User, FootBallTeam, Bet), Associations 
(e.g., FootBallMatch, UserBet), Collections (e.g., 
MatchesOfTheDay, TeamRanking), Nodes and Clusters. In this 
case the analysis of the statements accessing the data base in the 
server pages allowed a more precise identification of the Entities 
and Associations. 
Finally a third experiment considered a large number of client 
pages downloaded from some web sites available on the net. The 
pages of each web site were analyzed and for each site the UWA 
concepts recovered. The approach showed a lower precision in 
identifying Entities and Associations in those Web sites where 
both pages with forms and pages with a structure reporting 
explicit labels were lacking. In this case the cloned pages based 
method was found to be more effective in identifying concepts 
implemented by just plain text. 

5.1 Conclusions  
The results of the conducted experiments were satisfactory and 
encouraging: they showed the feasibility of the approach and a 
good effectiveness.  
The definition of alternative criteria to identify UWA Entities as 
well as the refinement of the used ones is expected to improve 
both the effectiveness and precision of the approach. Further 
experiments will help in this direction. 



 

Future work will be devoted to complete the development of the 
RE-UWA tool and to extend the RE approach itself to recover the 
UWA Publishing Model (which describes how Nodes and 
Clusters are arranged into WA pages) and the UWA Transaction 
Model (which models the business processes implemented by the 
WA). 

6. REFERENCES 
[1] L. Baresi, F. Garzotto, P. Paolini, “Extending UML for Modeling 

Web Applications.” In Proceedings of the 34th Annual Hawaii 
International Conference on System Sciences (HICSS-34: Honolulu, 
HI, 2001). Los Alamitos, CA: IEEE CS Press. 

[2] UWA Project Consortium, “Ubiquitous Web Applications”. In 
Proceedings of the eBusiness and eWork Conference 2002, (e2002: 
16-18 October 2002; Prague, Czech Republic). 

[3] UWA Project Consortium, “Deliverable D2: General Definition of 
the UWA Framework.” 2001. 

[4] D. Schwabe, and G. Rossi, “An Object-Oriented Approach to Web-
Based Application Design.” Theory and Practice of Object Systems 
(TAPOS), Vol 4 (1998) 207-225. 

[5] A. Bangio, S. Ceri, P. Fraternali, “Web Modeling Language 
(WebML): a modeling language for designing Web sites”. In 
Proceedings of the 9th International Conference on the WWW 
(WWW9) - 2000. Elsevier: Amsterdam, Holland, 2000: 137-157. 

[6] N. Koch, A. Kraus, C. Cachero, and S. Meliá, “Modeling Web 
Business Processes with OO-H and UWE.” In Proceedings of the 3rd 
International Workshop on Web Oriented Software Technology 
(IWWOST 2003: July 15, 2003, Oviedo, Spain). 

[7] D. Distante, T. Parveen, and S. Tilley, “Towards a Technique for 
Reverse Engineering Web Transactions from a User’s Perspective”. 
In Proceedings of the 12th International Workshop on Program 
Comprehension (IWPC 2004: June 24-26, 2004; Bari, Italy). Los 
Alamitos, CA: IEEE Computer Society Press, 2004, pp. 142 - 150. 

[8] D. Distante, S. Tilley, and S. Huang, “Documenting Software 
Systems with Views IV: Documenting Web Transaction Design with 
UWAT+.” In Proceedings of the 22nd International Conference on 
Design of Communication (SIGDOC 2004: October 10-13, 2004; 
Memphis, TN). ACM Press: New York, NY, 2004, pp. 33-40. 

[9] S. Tilley, D. Distante, and S. Huang, “Design Recovery of Web 
Application Transactions.” In Advances in Software Evolution with 
UML and XML (Editor: Hongji Yang). Hershey, PA: Idea Group 
Publishing, May 2005. 

[10] A. Knight, N. Dai, “Objects and the Web”, IEEE Software, Mar-Apr 
2002, pp. 51- 59. 

[11] J. Conallen, “Building Web Applications with UML – 2nd Edition”. 
Addison Wesley Publishing Company: Reading, MA, 2002. 

[12] S. Chung, Y.S. Lee, “Reverse software engineering with UML for 
web site maintenance”. In Proceedings of 1st International 
Conference on Web Information Systems Engineering, 2001, IEEE 
CS Press, Los Alamitos, CA, (2): 157-161 

[13] G. A. Di Lucca, A.R. Fasolino, U. De Carlini, F. Pace, P. 
Tramontana, “WARE: a tool for the Reverse Engineering of web 
Applications”, In Proceedings of 6th European Conference on 
Software Maintenance and Reengineering, Mar. 2002, IEEE CS 
Press, pp. 241-250. 

[14] F. Ricca, P. Tonella, “Understanding and Restructuring Web Sites 
with ReWeb”, IEEE Multimedia, 2001, 8(2): 40-51. 

[15] G. A. Di Lucca, A.R. Fasolino, U. De Carlini, F. Pace, P. 
Tramontana, “Comprehending Web Applications by a Clustering 
Based Approach”. In Proceedings of 10th IEEE Workshop on 
Program Comprehension, IWPC 2002, IEEE CS Press, pp. 261-270. 

[16] Object Management Group (OMG). Unified Language 
Modeling Specification (Version 2.0). Online at 
www.omg.org. 2004. 

[17] G. A. Di Lucca, A.R. Fasolino, U. De Carlini, P. Tramontana, 
“Recovering a Business Object Model from Web Applications”. In 
Proceedings of 27th IEEE Annual International Computer Software 
and Applications Conference (COMPSAC 2003), Dallas, USA, 
November, 2003, IEEE Comp. Soc. Press, Los Alamitos, California. 

[18] G. A. Di Lucca, A.R. Fasolino, U. De Carlini, P. Tramontana, 
“Abstracting Business Level UML Diagrams from Web 
Applications”. In Proceedings of the 5th IEEE International 
Workshop on Web Site Evolution. Amsterdam, The Netherlands, 22 
Sept.. 2003, IEEE Comp. Soc. Press, Los Alamitos, California. 

[19] UWA Project Consortium. Deliverable D7: Hypermedia and 
Operation design: model and tool architecture. 2001. 

[20] UML Meta Object Facility (MOF) Core Specification OMG 
Available Specification Version 2.0 formal/06-01-01. www.uml.org. 
2006. 

[21] G. A. Di Lucca, M. Di Penta A. R. Fasolino, “An Approach to 
Identify Duplicated Web Pages”. In Proceedings of 26th IEEE 
Annual International Computer Software and Applications 
Conference (COMPSAC 2002), Oxford, England, August 26-29, 
2002, IEEE Comp. Soc. Press, Los Alamitos, California 

[22] G. A. Di Lucca, A. R. Fasolino, P. Tramontana, U. De Carlini, 
“Identifying Reusable Components in Web Applications ”, In 
Proceedings of the IASTED International Conference on Software 
Engineering, Innsbruck, Austria, February 17 - 19, 2004. 

[23] Web Design patterns, http://www.welie.com/patterns. 

[24] G. A. Di Lucca, A. R. Fasolino, P. Tramontana, “Recovering 
Interaction Design Patterns in Web Applications”. In Proceedings of 
the IEEE 9th European Conference on Software Maintenance and 
Reengineering, Manchester, United Kingdom, 21-23 March 2005, 
IEEE Comp. Soc. Press, Los Alamitos, California. 

[25]  IBM Rational Rose Enterprise. http://www.ibm.com/rational. 
 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


